

LNCT GROUP OF COLLEGES

Name of Faculty: Dr. D. K. Jain Designation: Professor Department: Civil Engineering Subject: CE-601 Structural Design and Drawing (RCC-1) Unit: 3 – Design of Slabs Topic: Design of Circular Slabs

Teaching/Learning from home

Name of faculty:	Dr. D. K. Jain
Designation :	Professor
Department:	Department of Civil Engineering LNCT, Bhopol
Subject :	CE-601 Structural Design & Drawing (RCC-1)
Unit :	Unit-3 "Design of Slabs"
Topic :	Design of circular Slab - Numerical example.

26.3.2020

Humerical Example:-

Defign a simply supported circular slab corrying a superimposed load of 3 KN/m². The effective diameter of the slab is 4.8m. Use mzo grade concrete and Fe HIS grade steel. Assume Poisson's Ratio for RCC as Jew.

<u>Solution:</u> For cincular slabs of smaller spons ratio of <u>Effective span</u> i.e. <u>L</u> can be taken as 40 <u>Overall depth</u> i.e. <u>L</u> can be taken as 40 to meet serviceability contained of deflection. <u>L</u> = 40 or, <u>4800</u> = 40 ... <u>D</u> = 120 mm. effective depth $d = D - chem cover - \frac{bardiameter}{2}$ or, $d = 120 - 15 - \frac{10}{2} = 100$ mm.

Load Calculation:
Deal Load of slab =
$$0.12 \times 25 = 3 \text{ kn/m^2}$$

Suprimposed Load = 3 kn/m^2
Total Load = 6 kn/m^2
Factored Load wa = $6 \times 1.5 = 9 \text{ kn/m^2}$

Scanned with CamScanner

Moment Caludation: - (Bending moments ber m.
A.At Centre of Span: -
Maximum radial B.M.
$$Mr = \frac{3}{16} \frac{Mu.R^2}{16} = \frac{K}{2}$$

 $= \frac{3}{16} \frac{3}{16} \frac{R}{16} = \frac{K}{2}$
 $= \frac{42}{16}$
 $= \frac{1}{16}$
 $= \frac{1}{1$

Scanned with CamScanner

Area of sted calculations:
Fince section is under-reinforced
So,
$$M_{U} = 0.87.5y.Att.d \left(1 - \frac{Att.}{b.0t}, \frac{5y}{5tk}\right) = --\frac{Ann.5}{12}$$

At midspans-
 $M_{X} = M_{0} = M_{U} = 9.72 \text{ kA-m.}$
So, $9.72 \times 10^{6} = 0.87 \times 415 \times Att \times 1000 \left(1 - \frac{Att.}{1000 \times 100} \times \frac{415}{200}\right)$
 $0.7 \times 269.21 = Ast \left(1 - \frac{Att.}{4815}\right)$
Solving by trial & error we get $Att = 2.90 \text{ mm}^{2}$
Minimum steel = $0.12/.$ of guoss costs sectional area
 $= \frac{0.12}{100} \times 1000 \times 120$
 $= 144 \text{ mm}^{2}$ 290 > 144 S0, 0K.
Spacing of 10 mm. dia bass = $\frac{1000}{2.90/76.5} = 270.7 \text{ mm.}$
Hence provide 10 mm. dia bass @ 270 mm. c/c in
both directions (x & y) in the form of meth.
B. At Support:
 $M = 0$
 $M =$

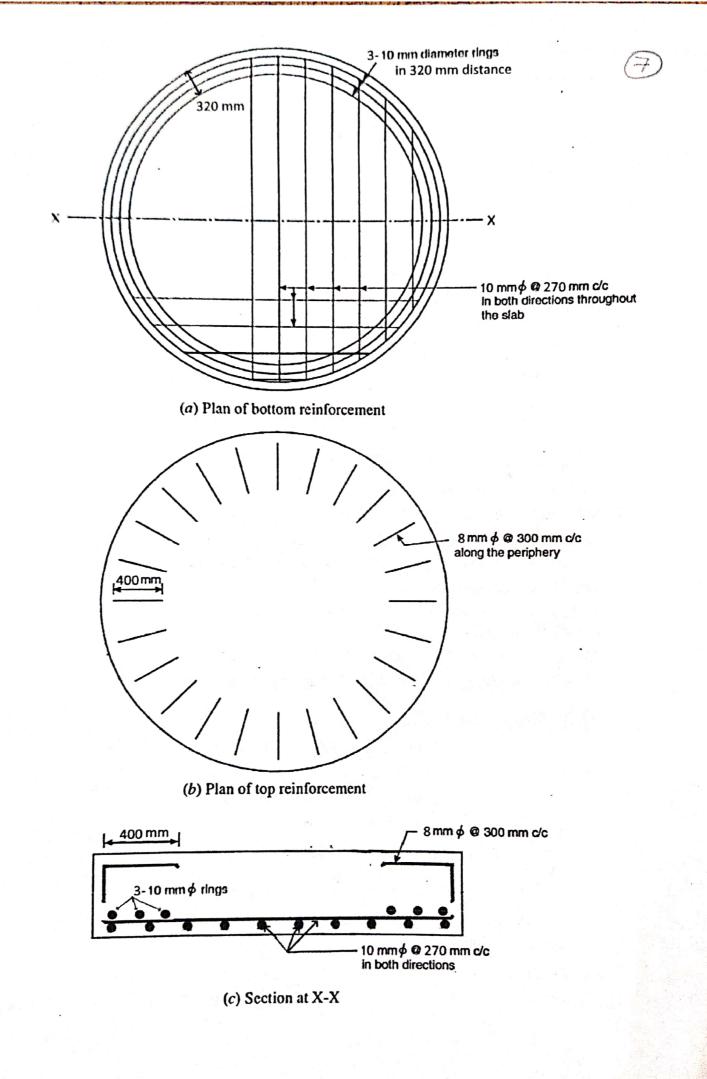
Scanned with CamScanner

5 This is to be provided in the form of circumphenestial rings near support is a distance of 3-Ldr = 3-×47\$ = 3-×47×10=3/3 mm . [Lat is development length in tention = 470 for m20 concrete.] \$= dia of bar = 10 mm. (inv) No. of 10 mm. dia rings required = $\frac{193}{78.5} = 2.46$ Say 3 So, provide 3 rings in a distance of 320 mm. near support. All the above steel is provided as bottom steel. Top steel near support:-To account for partial fixity, it any (due to construction of panapet wall over slat etc.) -re moment reintorvement is provided near Enpporting edge for a moment of approx. to moment at contre SO, Ast = 1 × midsprn steel

$$= \frac{1}{3} \times 290$$

= 96.7 mm² < min.144 mm²
so provide $Att = 144 \text{ mm}^2$

6


so porvide 8 mm. dia bara @ 300 mm. 4c This is to be provided in radial direction, for a distance of $Ldt = 47 \phi = 47 \times 8 = 376 \text{ mm}$. say 400 mm.

Check for Shear:-
Max. shear
$$V_{u} = \frac{W_{u} \cdot L}{2}$$

 $= \frac{9 \times 4}{2}$
 v_{u} , $V_{u} = 18 \text{ kN}$

VN

Nominal shear stress
$$Tv = \frac{V_u}{4d}$$

= $\frac{18 \times 1000}{1000 \times 100}$
 $\therefore Tv = 0.18 \text{ N/mm}^2$

we can
strip // steel provided at support
there =
$$\frac{(1000/270) \times 78.5}{1000} \times 100$$

as
 $tv = 0.18 \text{ N/mm}^2$ = 0.25 /.
 $tv = 0.18 \text{ N/mm}^2$
which is
 $tv = 0.36 + \frac{(0.48-0.36)}{(0.50-0.25)} \times (0.29-0.25)^{---}$ from Table 19
 $ts + 56:2000$
 $tv = 1.30$ for slab thickness < 150 mm. -11 -
 $tr = 1.30$ for slab thickness < 150 mm. -11 -
 $tr = 0.3792 \times 1.30 = 0.493 \text{ N/mm}^2$
 $tr = 0.18 \text{ N/mm}^2$
 $tr = 0.3792 \times 1.30 = 0.493 \text{ N/mm}^2$
 $tr = 0.18 \text{ N/mm}^2$
 $tr = 0.18 \text{ N/mm}^2$

LNCT GROUP OF COLLEGES

END

